This commit is contained in:
2025-08-04 18:57:35 +02:00
parent 8cf6e78a79
commit 9495868c2e
5030 changed files with 518594 additions and 17609 deletions

199
node_modules/pixi.js/lib/maths/matrix/Matrix.d.ts generated vendored Normal file
View File

@@ -0,0 +1,199 @@
import { Point } from '../point/Point';
import type { PointData } from '../point/PointData';
interface TransformableObject {
position: PointData;
scale: PointData;
pivot: PointData;
skew: PointData;
rotation: number;
}
/**
* A fast matrix for 2D transformations.
* ```js
* | a | c | tx|
* | b | d | ty|
* | 0 | 0 | 1 |
* ```
* @memberof maths
*/
export declare class Matrix {
/** @default 1 */
a: number;
/** @default 0 */
b: number;
/** @default 0 */
c: number;
/** @default 1 */
d: number;
/** @default 0 */
tx: number;
/** @default 0 */
ty: number;
/** An array of the current matrix. Only populated when `toArray` is called */
array: Float32Array | null;
/**
* @param a - x scale
* @param b - y skew
* @param c - x skew
* @param d - y scale
* @param tx - x translation
* @param ty - y translation
*/
constructor(a?: number, b?: number, c?: number, d?: number, tx?: number, ty?: number);
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
* @param array - The array that the matrix will be populated from.
*/
fromArray(array: number[]): void;
/**
* Sets the matrix properties.
* @param a - Matrix component
* @param b - Matrix component
* @param c - Matrix component
* @param d - Matrix component
* @param tx - Matrix component
* @param ty - Matrix component
* @returns This matrix. Good for chaining method calls.
*/
set(a: number, b: number, c: number, d: number, tx: number, ty: number): this;
/**
* Creates an array from the current Matrix object.
* @param transpose - Whether we need to transpose the matrix or not
* @param [out=new Float32Array(9)] - If provided the array will be assigned to out
* @returns The newly created array which contains the matrix
*/
toArray(transpose?: boolean, out?: Float32Array): Float32Array;
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, transformed through this matrix
*/
apply<P extends PointData = Point>(pos: PointData, newPos?: P): P;
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, inverse-transformed through this matrix
*/
applyInverse<P extends PointData = Point>(pos: PointData, newPos?: P): P;
/**
* Translates the matrix on the x and y.
* @param x - How much to translate x by
* @param y - How much to translate y by
* @returns This matrix. Good for chaining method calls.
*/
translate(x: number, y: number): this;
/**
* Applies a scale transformation to the matrix.
* @param x - The amount to scale horizontally
* @param y - The amount to scale vertically
* @returns This matrix. Good for chaining method calls.
*/
scale(x: number, y: number): this;
/**
* Applies a rotation transformation to the matrix.
* @param angle - The angle in radians.
* @returns This matrix. Good for chaining method calls.
*/
rotate(angle: number): this;
/**
* Appends the given Matrix to this Matrix.
* @param matrix - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
append(matrix: Matrix): this;
/**
* Appends two matrix's and sets the result to this matrix. AB = A * B
* @param a - The matrix to append.
* @param b - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
appendFrom(a: Matrix, b: Matrix): this;
/**
* Sets the matrix based on all the available properties
* @param x - Position on the x axis
* @param y - Position on the y axis
* @param pivotX - Pivot on the x axis
* @param pivotY - Pivot on the y axis
* @param scaleX - Scale on the x axis
* @param scaleY - Scale on the y axis
* @param rotation - Rotation in radians
* @param skewX - Skew on the x axis
* @param skewY - Skew on the y axis
* @returns This matrix. Good for chaining method calls.
*/
setTransform(x: number, y: number, pivotX: number, pivotY: number, scaleX: number, scaleY: number, rotation: number, skewX: number, skewY: number): this;
/**
* Prepends the given Matrix to this Matrix.
* @param matrix - The matrix to prepend
* @returns This matrix. Good for chaining method calls.
*/
prepend(matrix: Matrix): this;
/**
* Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.
* @param transform - The transform to apply the properties to.
* @returns The transform with the newly applied properties
*/
decompose(transform: TransformableObject): TransformableObject;
/**
* Inverts this matrix
* @returns This matrix. Good for chaining method calls.
*/
invert(): this;
/** Checks if this matrix is an identity matrix */
isIdentity(): boolean;
/**
* Resets this Matrix to an identity (default) matrix.
* @returns This matrix. Good for chaining method calls.
*/
identity(): this;
/**
* Creates a new Matrix object with the same values as this one.
* @returns A copy of this matrix. Good for chaining method calls.
*/
clone(): Matrix;
/**
* Changes the values of the given matrix to be the same as the ones in this matrix
* @param matrix - The matrix to copy to.
* @returns The matrix given in parameter with its values updated.
*/
copyTo(matrix: Matrix): Matrix;
/**
* Changes the values of the matrix to be the same as the ones in given matrix
* @param matrix - The matrix to copy from.
* @returns this
*/
copyFrom(matrix: Matrix): this;
/**
* check to see if two matrices are the same
* @param matrix - The matrix to compare to.
*/
equals(matrix: Matrix): boolean;
toString(): string;
/**
* A default (identity) matrix.
*
* This is a shared object, if you want to modify it consider creating a new `Matrix`
* @readonly
*/
static get IDENTITY(): Readonly<Matrix>;
/**
* A static Matrix that can be used to avoid creating new objects.
* Will always ensure the matrix is reset to identity when requested.
* Use this object for fast but temporary calculations, as it may be mutated later on.
* This is a different object to the `IDENTITY` object and so can be modified without changing `IDENTITY`.
* @readonly
*/
static get shared(): Matrix;
}
export {};

404
node_modules/pixi.js/lib/maths/matrix/Matrix.js generated vendored Normal file
View File

@@ -0,0 +1,404 @@
'use strict';
var _const = require('../misc/const.js');
var Point = require('../point/Point.js');
"use strict";
class Matrix {
/**
* @param a - x scale
* @param b - y skew
* @param c - x skew
* @param d - y scale
* @param tx - x translation
* @param ty - y translation
*/
constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0) {
/** An array of the current matrix. Only populated when `toArray` is called */
this.array = null;
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
}
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
* @param array - The array that the matrix will be populated from.
*/
fromArray(array) {
this.a = array[0];
this.b = array[1];
this.c = array[3];
this.d = array[4];
this.tx = array[2];
this.ty = array[5];
}
/**
* Sets the matrix properties.
* @param a - Matrix component
* @param b - Matrix component
* @param c - Matrix component
* @param d - Matrix component
* @param tx - Matrix component
* @param ty - Matrix component
* @returns This matrix. Good for chaining method calls.
*/
set(a, b, c, d, tx, ty) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
return this;
}
/**
* Creates an array from the current Matrix object.
* @param transpose - Whether we need to transpose the matrix or not
* @param [out=new Float32Array(9)] - If provided the array will be assigned to out
* @returns The newly created array which contains the matrix
*/
toArray(transpose, out) {
if (!this.array) {
this.array = new Float32Array(9);
}
const array = out || this.array;
if (transpose) {
array[0] = this.a;
array[1] = this.b;
array[2] = 0;
array[3] = this.c;
array[4] = this.d;
array[5] = 0;
array[6] = this.tx;
array[7] = this.ty;
array[8] = 1;
} else {
array[0] = this.a;
array[1] = this.c;
array[2] = this.tx;
array[3] = this.b;
array[4] = this.d;
array[5] = this.ty;
array[6] = 0;
array[7] = 0;
array[8] = 1;
}
return array;
}
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, transformed through this matrix
*/
apply(pos, newPos) {
newPos = newPos || new Point.Point();
const x = pos.x;
const y = pos.y;
newPos.x = this.a * x + this.c * y + this.tx;
newPos.y = this.b * x + this.d * y + this.ty;
return newPos;
}
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, inverse-transformed through this matrix
*/
applyInverse(pos, newPos) {
newPos = newPos || new Point.Point();
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const tx = this.tx;
const ty = this.ty;
const id = 1 / (a * d + c * -b);
const x = pos.x;
const y = pos.y;
newPos.x = d * id * x + -c * id * y + (ty * c - tx * d) * id;
newPos.y = a * id * y + -b * id * x + (-ty * a + tx * b) * id;
return newPos;
}
/**
* Translates the matrix on the x and y.
* @param x - How much to translate x by
* @param y - How much to translate y by
* @returns This matrix. Good for chaining method calls.
*/
translate(x, y) {
this.tx += x;
this.ty += y;
return this;
}
/**
* Applies a scale transformation to the matrix.
* @param x - The amount to scale horizontally
* @param y - The amount to scale vertically
* @returns This matrix. Good for chaining method calls.
*/
scale(x, y) {
this.a *= x;
this.d *= y;
this.c *= x;
this.b *= y;
this.tx *= x;
this.ty *= y;
return this;
}
/**
* Applies a rotation transformation to the matrix.
* @param angle - The angle in radians.
* @returns This matrix. Good for chaining method calls.
*/
rotate(angle) {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const a1 = this.a;
const c1 = this.c;
const tx1 = this.tx;
this.a = a1 * cos - this.b * sin;
this.b = a1 * sin + this.b * cos;
this.c = c1 * cos - this.d * sin;
this.d = c1 * sin + this.d * cos;
this.tx = tx1 * cos - this.ty * sin;
this.ty = tx1 * sin + this.ty * cos;
return this;
}
/**
* Appends the given Matrix to this Matrix.
* @param matrix - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
append(matrix) {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
this.a = matrix.a * a1 + matrix.b * c1;
this.b = matrix.a * b1 + matrix.b * d1;
this.c = matrix.c * a1 + matrix.d * c1;
this.d = matrix.c * b1 + matrix.d * d1;
this.tx = matrix.tx * a1 + matrix.ty * c1 + this.tx;
this.ty = matrix.tx * b1 + matrix.ty * d1 + this.ty;
return this;
}
/**
* Appends two matrix's and sets the result to this matrix. AB = A * B
* @param a - The matrix to append.
* @param b - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
appendFrom(a, b) {
const a1 = a.a;
const b1 = a.b;
const c1 = a.c;
const d1 = a.d;
const tx = a.tx;
const ty = a.ty;
const a2 = b.a;
const b2 = b.b;
const c2 = b.c;
const d2 = b.d;
this.a = a1 * a2 + b1 * c2;
this.b = a1 * b2 + b1 * d2;
this.c = c1 * a2 + d1 * c2;
this.d = c1 * b2 + d1 * d2;
this.tx = tx * a2 + ty * c2 + b.tx;
this.ty = tx * b2 + ty * d2 + b.ty;
return this;
}
/**
* Sets the matrix based on all the available properties
* @param x - Position on the x axis
* @param y - Position on the y axis
* @param pivotX - Pivot on the x axis
* @param pivotY - Pivot on the y axis
* @param scaleX - Scale on the x axis
* @param scaleY - Scale on the y axis
* @param rotation - Rotation in radians
* @param skewX - Skew on the x axis
* @param skewY - Skew on the y axis
* @returns This matrix. Good for chaining method calls.
*/
setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY) {
this.a = Math.cos(rotation + skewY) * scaleX;
this.b = Math.sin(rotation + skewY) * scaleX;
this.c = -Math.sin(rotation - skewX) * scaleY;
this.d = Math.cos(rotation - skewX) * scaleY;
this.tx = x - (pivotX * this.a + pivotY * this.c);
this.ty = y - (pivotX * this.b + pivotY * this.d);
return this;
}
/**
* Prepends the given Matrix to this Matrix.
* @param matrix - The matrix to prepend
* @returns This matrix. Good for chaining method calls.
*/
prepend(matrix) {
const tx1 = this.tx;
if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1) {
const a1 = this.a;
const c1 = this.c;
this.a = a1 * matrix.a + this.b * matrix.c;
this.b = a1 * matrix.b + this.b * matrix.d;
this.c = c1 * matrix.a + this.d * matrix.c;
this.d = c1 * matrix.b + this.d * matrix.d;
}
this.tx = tx1 * matrix.a + this.ty * matrix.c + matrix.tx;
this.ty = tx1 * matrix.b + this.ty * matrix.d + matrix.ty;
return this;
}
/**
* Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.
* @param transform - The transform to apply the properties to.
* @returns The transform with the newly applied properties
*/
decompose(transform) {
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const pivot = transform.pivot;
const skewX = -Math.atan2(-c, d);
const skewY = Math.atan2(b, a);
const delta = Math.abs(skewX + skewY);
if (delta < 1e-5 || Math.abs(_const.PI_2 - delta) < 1e-5) {
transform.rotation = skewY;
transform.skew.x = transform.skew.y = 0;
} else {
transform.rotation = 0;
transform.skew.x = skewX;
transform.skew.y = skewY;
}
transform.scale.x = Math.sqrt(a * a + b * b);
transform.scale.y = Math.sqrt(c * c + d * d);
transform.position.x = this.tx + (pivot.x * a + pivot.y * c);
transform.position.y = this.ty + (pivot.x * b + pivot.y * d);
return transform;
}
/**
* Inverts this matrix
* @returns This matrix. Good for chaining method calls.
*/
invert() {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
const tx1 = this.tx;
const n = a1 * d1 - b1 * c1;
this.a = d1 / n;
this.b = -b1 / n;
this.c = -c1 / n;
this.d = a1 / n;
this.tx = (c1 * this.ty - d1 * tx1) / n;
this.ty = -(a1 * this.ty - b1 * tx1) / n;
return this;
}
/** Checks if this matrix is an identity matrix */
isIdentity() {
return this.a === 1 && this.b === 0 && this.c === 0 && this.d === 1 && this.tx === 0 && this.ty === 0;
}
/**
* Resets this Matrix to an identity (default) matrix.
* @returns This matrix. Good for chaining method calls.
*/
identity() {
this.a = 1;
this.b = 0;
this.c = 0;
this.d = 1;
this.tx = 0;
this.ty = 0;
return this;
}
/**
* Creates a new Matrix object with the same values as this one.
* @returns A copy of this matrix. Good for chaining method calls.
*/
clone() {
const matrix = new Matrix();
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the given matrix to be the same as the ones in this matrix
* @param matrix - The matrix to copy to.
* @returns The matrix given in parameter with its values updated.
*/
copyTo(matrix) {
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the matrix to be the same as the ones in given matrix
* @param matrix - The matrix to copy from.
* @returns this
*/
copyFrom(matrix) {
this.a = matrix.a;
this.b = matrix.b;
this.c = matrix.c;
this.d = matrix.d;
this.tx = matrix.tx;
this.ty = matrix.ty;
return this;
}
/**
* check to see if two matrices are the same
* @param matrix - The matrix to compare to.
*/
equals(matrix) {
return matrix.a === this.a && matrix.b === this.b && matrix.c === this.c && matrix.d === this.d && matrix.tx === this.tx && matrix.ty === this.ty;
}
toString() {
return `[pixi.js:Matrix a=${this.a} b=${this.b} c=${this.c} d=${this.d} tx=${this.tx} ty=${this.ty}]`;
}
/**
* A default (identity) matrix.
*
* This is a shared object, if you want to modify it consider creating a new `Matrix`
* @readonly
*/
static get IDENTITY() {
return identityMatrix.identity();
}
/**
* A static Matrix that can be used to avoid creating new objects.
* Will always ensure the matrix is reset to identity when requested.
* Use this object for fast but temporary calculations, as it may be mutated later on.
* This is a different object to the `IDENTITY` object and so can be modified without changing `IDENTITY`.
* @readonly
*/
static get shared() {
return tempMatrix.identity();
}
}
const tempMatrix = new Matrix();
const identityMatrix = new Matrix();
exports.Matrix = Matrix;
//# sourceMappingURL=Matrix.js.map

1
node_modules/pixi.js/lib/maths/matrix/Matrix.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

402
node_modules/pixi.js/lib/maths/matrix/Matrix.mjs generated vendored Normal file
View File

@@ -0,0 +1,402 @@
import { PI_2 } from '../misc/const.mjs';
import { Point } from '../point/Point.mjs';
"use strict";
class Matrix {
/**
* @param a - x scale
* @param b - y skew
* @param c - x skew
* @param d - y scale
* @param tx - x translation
* @param ty - y translation
*/
constructor(a = 1, b = 0, c = 0, d = 1, tx = 0, ty = 0) {
/** An array of the current matrix. Only populated when `toArray` is called */
this.array = null;
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
}
/**
* Creates a Matrix object based on the given array. The Element to Matrix mapping order is as follows:
*
* a = array[0]
* b = array[1]
* c = array[3]
* d = array[4]
* tx = array[2]
* ty = array[5]
* @param array - The array that the matrix will be populated from.
*/
fromArray(array) {
this.a = array[0];
this.b = array[1];
this.c = array[3];
this.d = array[4];
this.tx = array[2];
this.ty = array[5];
}
/**
* Sets the matrix properties.
* @param a - Matrix component
* @param b - Matrix component
* @param c - Matrix component
* @param d - Matrix component
* @param tx - Matrix component
* @param ty - Matrix component
* @returns This matrix. Good for chaining method calls.
*/
set(a, b, c, d, tx, ty) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.tx = tx;
this.ty = ty;
return this;
}
/**
* Creates an array from the current Matrix object.
* @param transpose - Whether we need to transpose the matrix or not
* @param [out=new Float32Array(9)] - If provided the array will be assigned to out
* @returns The newly created array which contains the matrix
*/
toArray(transpose, out) {
if (!this.array) {
this.array = new Float32Array(9);
}
const array = out || this.array;
if (transpose) {
array[0] = this.a;
array[1] = this.b;
array[2] = 0;
array[3] = this.c;
array[4] = this.d;
array[5] = 0;
array[6] = this.tx;
array[7] = this.ty;
array[8] = 1;
} else {
array[0] = this.a;
array[1] = this.c;
array[2] = this.tx;
array[3] = this.b;
array[4] = this.d;
array[5] = this.ty;
array[6] = 0;
array[7] = 0;
array[8] = 1;
}
return array;
}
/**
* Get a new position with the current transformation applied.
* Can be used to go from a child's coordinate space to the world coordinate space. (e.g. rendering)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, transformed through this matrix
*/
apply(pos, newPos) {
newPos = newPos || new Point();
const x = pos.x;
const y = pos.y;
newPos.x = this.a * x + this.c * y + this.tx;
newPos.y = this.b * x + this.d * y + this.ty;
return newPos;
}
/**
* Get a new position with the inverse of the current transformation applied.
* Can be used to go from the world coordinate space to a child's coordinate space. (e.g. input)
* @param pos - The origin
* @param {Point} [newPos] - The point that the new position is assigned to (allowed to be same as input)
* @returns {Point} The new point, inverse-transformed through this matrix
*/
applyInverse(pos, newPos) {
newPos = newPos || new Point();
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const tx = this.tx;
const ty = this.ty;
const id = 1 / (a * d + c * -b);
const x = pos.x;
const y = pos.y;
newPos.x = d * id * x + -c * id * y + (ty * c - tx * d) * id;
newPos.y = a * id * y + -b * id * x + (-ty * a + tx * b) * id;
return newPos;
}
/**
* Translates the matrix on the x and y.
* @param x - How much to translate x by
* @param y - How much to translate y by
* @returns This matrix. Good for chaining method calls.
*/
translate(x, y) {
this.tx += x;
this.ty += y;
return this;
}
/**
* Applies a scale transformation to the matrix.
* @param x - The amount to scale horizontally
* @param y - The amount to scale vertically
* @returns This matrix. Good for chaining method calls.
*/
scale(x, y) {
this.a *= x;
this.d *= y;
this.c *= x;
this.b *= y;
this.tx *= x;
this.ty *= y;
return this;
}
/**
* Applies a rotation transformation to the matrix.
* @param angle - The angle in radians.
* @returns This matrix. Good for chaining method calls.
*/
rotate(angle) {
const cos = Math.cos(angle);
const sin = Math.sin(angle);
const a1 = this.a;
const c1 = this.c;
const tx1 = this.tx;
this.a = a1 * cos - this.b * sin;
this.b = a1 * sin + this.b * cos;
this.c = c1 * cos - this.d * sin;
this.d = c1 * sin + this.d * cos;
this.tx = tx1 * cos - this.ty * sin;
this.ty = tx1 * sin + this.ty * cos;
return this;
}
/**
* Appends the given Matrix to this Matrix.
* @param matrix - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
append(matrix) {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
this.a = matrix.a * a1 + matrix.b * c1;
this.b = matrix.a * b1 + matrix.b * d1;
this.c = matrix.c * a1 + matrix.d * c1;
this.d = matrix.c * b1 + matrix.d * d1;
this.tx = matrix.tx * a1 + matrix.ty * c1 + this.tx;
this.ty = matrix.tx * b1 + matrix.ty * d1 + this.ty;
return this;
}
/**
* Appends two matrix's and sets the result to this matrix. AB = A * B
* @param a - The matrix to append.
* @param b - The matrix to append.
* @returns This matrix. Good for chaining method calls.
*/
appendFrom(a, b) {
const a1 = a.a;
const b1 = a.b;
const c1 = a.c;
const d1 = a.d;
const tx = a.tx;
const ty = a.ty;
const a2 = b.a;
const b2 = b.b;
const c2 = b.c;
const d2 = b.d;
this.a = a1 * a2 + b1 * c2;
this.b = a1 * b2 + b1 * d2;
this.c = c1 * a2 + d1 * c2;
this.d = c1 * b2 + d1 * d2;
this.tx = tx * a2 + ty * c2 + b.tx;
this.ty = tx * b2 + ty * d2 + b.ty;
return this;
}
/**
* Sets the matrix based on all the available properties
* @param x - Position on the x axis
* @param y - Position on the y axis
* @param pivotX - Pivot on the x axis
* @param pivotY - Pivot on the y axis
* @param scaleX - Scale on the x axis
* @param scaleY - Scale on the y axis
* @param rotation - Rotation in radians
* @param skewX - Skew on the x axis
* @param skewY - Skew on the y axis
* @returns This matrix. Good for chaining method calls.
*/
setTransform(x, y, pivotX, pivotY, scaleX, scaleY, rotation, skewX, skewY) {
this.a = Math.cos(rotation + skewY) * scaleX;
this.b = Math.sin(rotation + skewY) * scaleX;
this.c = -Math.sin(rotation - skewX) * scaleY;
this.d = Math.cos(rotation - skewX) * scaleY;
this.tx = x - (pivotX * this.a + pivotY * this.c);
this.ty = y - (pivotX * this.b + pivotY * this.d);
return this;
}
/**
* Prepends the given Matrix to this Matrix.
* @param matrix - The matrix to prepend
* @returns This matrix. Good for chaining method calls.
*/
prepend(matrix) {
const tx1 = this.tx;
if (matrix.a !== 1 || matrix.b !== 0 || matrix.c !== 0 || matrix.d !== 1) {
const a1 = this.a;
const c1 = this.c;
this.a = a1 * matrix.a + this.b * matrix.c;
this.b = a1 * matrix.b + this.b * matrix.d;
this.c = c1 * matrix.a + this.d * matrix.c;
this.d = c1 * matrix.b + this.d * matrix.d;
}
this.tx = tx1 * matrix.a + this.ty * matrix.c + matrix.tx;
this.ty = tx1 * matrix.b + this.ty * matrix.d + matrix.ty;
return this;
}
/**
* Decomposes the matrix (x, y, scaleX, scaleY, and rotation) and sets the properties on to a transform.
* @param transform - The transform to apply the properties to.
* @returns The transform with the newly applied properties
*/
decompose(transform) {
const a = this.a;
const b = this.b;
const c = this.c;
const d = this.d;
const pivot = transform.pivot;
const skewX = -Math.atan2(-c, d);
const skewY = Math.atan2(b, a);
const delta = Math.abs(skewX + skewY);
if (delta < 1e-5 || Math.abs(PI_2 - delta) < 1e-5) {
transform.rotation = skewY;
transform.skew.x = transform.skew.y = 0;
} else {
transform.rotation = 0;
transform.skew.x = skewX;
transform.skew.y = skewY;
}
transform.scale.x = Math.sqrt(a * a + b * b);
transform.scale.y = Math.sqrt(c * c + d * d);
transform.position.x = this.tx + (pivot.x * a + pivot.y * c);
transform.position.y = this.ty + (pivot.x * b + pivot.y * d);
return transform;
}
/**
* Inverts this matrix
* @returns This matrix. Good for chaining method calls.
*/
invert() {
const a1 = this.a;
const b1 = this.b;
const c1 = this.c;
const d1 = this.d;
const tx1 = this.tx;
const n = a1 * d1 - b1 * c1;
this.a = d1 / n;
this.b = -b1 / n;
this.c = -c1 / n;
this.d = a1 / n;
this.tx = (c1 * this.ty - d1 * tx1) / n;
this.ty = -(a1 * this.ty - b1 * tx1) / n;
return this;
}
/** Checks if this matrix is an identity matrix */
isIdentity() {
return this.a === 1 && this.b === 0 && this.c === 0 && this.d === 1 && this.tx === 0 && this.ty === 0;
}
/**
* Resets this Matrix to an identity (default) matrix.
* @returns This matrix. Good for chaining method calls.
*/
identity() {
this.a = 1;
this.b = 0;
this.c = 0;
this.d = 1;
this.tx = 0;
this.ty = 0;
return this;
}
/**
* Creates a new Matrix object with the same values as this one.
* @returns A copy of this matrix. Good for chaining method calls.
*/
clone() {
const matrix = new Matrix();
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the given matrix to be the same as the ones in this matrix
* @param matrix - The matrix to copy to.
* @returns The matrix given in parameter with its values updated.
*/
copyTo(matrix) {
matrix.a = this.a;
matrix.b = this.b;
matrix.c = this.c;
matrix.d = this.d;
matrix.tx = this.tx;
matrix.ty = this.ty;
return matrix;
}
/**
* Changes the values of the matrix to be the same as the ones in given matrix
* @param matrix - The matrix to copy from.
* @returns this
*/
copyFrom(matrix) {
this.a = matrix.a;
this.b = matrix.b;
this.c = matrix.c;
this.d = matrix.d;
this.tx = matrix.tx;
this.ty = matrix.ty;
return this;
}
/**
* check to see if two matrices are the same
* @param matrix - The matrix to compare to.
*/
equals(matrix) {
return matrix.a === this.a && matrix.b === this.b && matrix.c === this.c && matrix.d === this.d && matrix.tx === this.tx && matrix.ty === this.ty;
}
toString() {
return `[pixi.js:Matrix a=${this.a} b=${this.b} c=${this.c} d=${this.d} tx=${this.tx} ty=${this.ty}]`;
}
/**
* A default (identity) matrix.
*
* This is a shared object, if you want to modify it consider creating a new `Matrix`
* @readonly
*/
static get IDENTITY() {
return identityMatrix.identity();
}
/**
* A static Matrix that can be used to avoid creating new objects.
* Will always ensure the matrix is reset to identity when requested.
* Use this object for fast but temporary calculations, as it may be mutated later on.
* This is a different object to the `IDENTITY` object and so can be modified without changing `IDENTITY`.
* @readonly
*/
static get shared() {
return tempMatrix.identity();
}
}
const tempMatrix = new Matrix();
const identityMatrix = new Matrix();
export { Matrix };
//# sourceMappingURL=Matrix.mjs.map

1
node_modules/pixi.js/lib/maths/matrix/Matrix.mjs.map generated vendored Normal file

File diff suppressed because one or more lines are too long

224
node_modules/pixi.js/lib/maths/matrix/groupD8.d.ts generated vendored Normal file
View File

@@ -0,0 +1,224 @@
import { Matrix } from './Matrix';
type GD8Symmetry = number;
/**
* @typedef {number} GD8Symmetry
* @see groupD8
*/
/**
* Implements the dihedral group D8, which is similar to
* [group D4]{@link http://mathworld.wolfram.com/DihedralGroupD4.html};
* D8 is the same but with diagonals, and it is used for texture
* rotations.
*
* The directions the U- and V- axes after rotation
* of an angle of `a: GD8Constant` are the vectors `(uX(a), uY(a))`
* and `(vX(a), vY(a))`. These aren't necessarily unit vectors.
*
* **Origin:**<br>
* This is the small part of gameofbombs.com portal system. It works.
* @see maths.groupD8.E
* @see maths.groupD8.SE
* @see maths.groupD8.S
* @see maths.groupD8.SW
* @see maths.groupD8.W
* @see maths.groupD8.NW
* @see maths.groupD8.N
* @see maths.groupD8.NE
* @author Ivan @ivanpopelyshev
* @namespace maths.groupD8
*/
export declare const groupD8: {
/**
* | Rotation | Direction |
* |----------|-----------|
* | 0° | East |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
E: number;
/**
* | Rotation | Direction |
* |----------|-----------|
* | 45°↻ | Southeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SE: number;
/**
* | Rotation | Direction |
* |----------|-----------|
* | 90°↻ | South |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
S: number;
/**
* | Rotation | Direction |
* |----------|-----------|
* | 135°↻ | Southwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SW: number;
/**
* | Rotation | Direction |
* |----------|-----------|
* | 180° | West |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
W: number;
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -135°/225°↻ | Northwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NW: number;
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -90°/270°↻ | North |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
N: number;
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -45°/315°↻ | Northeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NE: number;
/**
* Reflection about Y-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_VERTICAL: number;
/**
* Reflection about the main diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MAIN_DIAGONAL: number;
/**
* Reflection about X-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_HORIZONTAL: number;
/**
* Reflection about reverse diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
REVERSE_DIAGONAL: number;
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the U-axis
* after rotating the axes.
*/
uX: (ind: GD8Symmetry) => GD8Symmetry;
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the U-axis
* after rotating the axes.
*/
uY: (ind: GD8Symmetry) => GD8Symmetry;
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the V-axis
* after rotating the axes.
*/
vX: (ind: GD8Symmetry) => GD8Symmetry;
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the V-axis
* after rotating the axes.
*/
vY: (ind: GD8Symmetry) => GD8Symmetry;
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - symmetry whose opposite
* is needed. Only rotations have opposite symmetries while
* reflections don't.
* @returns {GD8Symmetry} The opposite symmetry of `rotation`
*/
inv: (rotation: GD8Symmetry) => GD8Symmetry;
/**
* Composes the two D8 operations.
*
* Taking `^` as reflection:
*
* | | E=0 | S=2 | W=4 | N=6 | E^=8 | S^=10 | W^=12 | N^=14 |
* |-------|-----|-----|-----|-----|------|-------|-------|-------|
* | E=0 | E | S | W | N | E^ | S^ | W^ | N^ |
* | S=2 | S | W | N | E | S^ | W^ | N^ | E^ |
* | W=4 | W | N | E | S | W^ | N^ | E^ | S^ |
* | N=6 | N | E | S | W | N^ | E^ | S^ | W^ |
* | E^=8 | E^ | N^ | W^ | S^ | E | N | W | S |
* | S^=10 | S^ | E^ | N^ | W^ | S | E | N | W |
* | W^=12 | W^ | S^ | E^ | N^ | W | S | E | N |
* | N^=14 | N^ | W^ | S^ | E^ | N | W | S | E |
*
* [This is a Cayley table]{@link https://en.wikipedia.org/wiki/Cayley_table}
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation, which
* is the row in the above cayley table.
* @param {GD8Symmetry} rotationFirst - First operation, which
* is the column in the above cayley table.
* @returns {GD8Symmetry} Composed operation
*/
add: (rotationSecond: GD8Symmetry, rotationFirst: GD8Symmetry) => GD8Symmetry;
/**
* Reverse of `add`.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation
* @param {GD8Symmetry} rotationFirst - First operation
* @returns {GD8Symmetry} Result
*/
sub: (rotationSecond: GD8Symmetry, rotationFirst: GD8Symmetry) => GD8Symmetry;
/**
* Adds 180 degrees to rotation, which is a commutative
* operation.
* @memberof maths.groupD8
* @param {number} rotation - The number to rotate.
* @returns {number} Rotated number
*/
rotate180: (rotation: number) => number;
/**
* Checks if the rotation angle is vertical, i.e. south
* or north. It doesn't work for reflections.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - The number to check.
* @returns {boolean} Whether or not the direction is vertical
*/
isVertical: (rotation: GD8Symmetry) => boolean;
/**
* Approximates the vector `V(dx,dy)` into one of the
* eight directions provided by `groupD8`.
* @memberof maths.groupD8
* @param {number} dx - X-component of the vector
* @param {number} dy - Y-component of the vector
* @returns {GD8Symmetry} Approximation of the vector into
* one of the eight symmetries.
*/
byDirection: (dx: number, dy: number) => GD8Symmetry;
/**
* Helps sprite to compensate texture packer rotation.
* @memberof maths.groupD8
* @param {Matrix} matrix - sprite world matrix
* @param {GD8Symmetry} rotation - The rotation factor to use.
* @param {number} tx - sprite anchoring
* @param {number} ty - sprite anchoring
*/
matrixAppendRotationInv: (matrix: Matrix, rotation: GD8Symmetry, tx?: number, ty?: number) => void;
};
export {};

264
node_modules/pixi.js/lib/maths/matrix/groupD8.js generated vendored Normal file
View File

@@ -0,0 +1,264 @@
'use strict';
var Matrix = require('./Matrix.js');
"use strict";
const ux = [1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1];
const uy = [0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1];
const vx = [0, -1, -1, -1, 0, 1, 1, 1, 0, 1, 1, 1, 0, -1, -1, -1];
const vy = [1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, -1];
const rotationCayley = [];
const rotationMatrices = [];
const signum = Math.sign;
function init() {
for (let i = 0; i < 16; i++) {
const row = [];
rotationCayley.push(row);
for (let j = 0; j < 16; j++) {
const _ux = signum(ux[i] * ux[j] + vx[i] * uy[j]);
const _uy = signum(uy[i] * ux[j] + vy[i] * uy[j]);
const _vx = signum(ux[i] * vx[j] + vx[i] * vy[j]);
const _vy = signum(uy[i] * vx[j] + vy[i] * vy[j]);
for (let k = 0; k < 16; k++) {
if (ux[k] === _ux && uy[k] === _uy && vx[k] === _vx && vy[k] === _vy) {
row.push(k);
break;
}
}
}
}
for (let i = 0; i < 16; i++) {
const mat = new Matrix.Matrix();
mat.set(ux[i], uy[i], vx[i], vy[i], 0, 0);
rotationMatrices.push(mat);
}
}
init();
const groupD8 = {
/**
* | Rotation | Direction |
* |----------|-----------|
* | 0° | East |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
E: 0,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 45°↻ | Southeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SE: 1,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 90°↻ | South |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
S: 2,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 135°↻ | Southwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SW: 3,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 180° | West |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
W: 4,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -135°/225°↻ | Northwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NW: 5,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -90°/270°↻ | North |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
N: 6,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -45°/315°↻ | Northeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NE: 7,
/**
* Reflection about Y-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_VERTICAL: 8,
/**
* Reflection about the main diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MAIN_DIAGONAL: 10,
/**
* Reflection about X-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_HORIZONTAL: 12,
/**
* Reflection about reverse diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
REVERSE_DIAGONAL: 14,
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the U-axis
* after rotating the axes.
*/
uX: (ind) => ux[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the U-axis
* after rotating the axes.
*/
uY: (ind) => uy[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the V-axis
* after rotating the axes.
*/
vX: (ind) => vx[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the V-axis
* after rotating the axes.
*/
vY: (ind) => vy[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - symmetry whose opposite
* is needed. Only rotations have opposite symmetries while
* reflections don't.
* @returns {GD8Symmetry} The opposite symmetry of `rotation`
*/
inv: (rotation) => {
if (rotation & 8) {
return rotation & 15;
}
return -rotation & 7;
},
/**
* Composes the two D8 operations.
*
* Taking `^` as reflection:
*
* | | E=0 | S=2 | W=4 | N=6 | E^=8 | S^=10 | W^=12 | N^=14 |
* |-------|-----|-----|-----|-----|------|-------|-------|-------|
* | E=0 | E | S | W | N | E^ | S^ | W^ | N^ |
* | S=2 | S | W | N | E | S^ | W^ | N^ | E^ |
* | W=4 | W | N | E | S | W^ | N^ | E^ | S^ |
* | N=6 | N | E | S | W | N^ | E^ | S^ | W^ |
* | E^=8 | E^ | N^ | W^ | S^ | E | N | W | S |
* | S^=10 | S^ | E^ | N^ | W^ | S | E | N | W |
* | W^=12 | W^ | S^ | E^ | N^ | W | S | E | N |
* | N^=14 | N^ | W^ | S^ | E^ | N | W | S | E |
*
* [This is a Cayley table]{@link https://en.wikipedia.org/wiki/Cayley_table}
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation, which
* is the row in the above cayley table.
* @param {GD8Symmetry} rotationFirst - First operation, which
* is the column in the above cayley table.
* @returns {GD8Symmetry} Composed operation
*/
add: (rotationSecond, rotationFirst) => rotationCayley[rotationSecond][rotationFirst],
/**
* Reverse of `add`.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation
* @param {GD8Symmetry} rotationFirst - First operation
* @returns {GD8Symmetry} Result
*/
sub: (rotationSecond, rotationFirst) => rotationCayley[rotationSecond][groupD8.inv(rotationFirst)],
/**
* Adds 180 degrees to rotation, which is a commutative
* operation.
* @memberof maths.groupD8
* @param {number} rotation - The number to rotate.
* @returns {number} Rotated number
*/
rotate180: (rotation) => rotation ^ 4,
/**
* Checks if the rotation angle is vertical, i.e. south
* or north. It doesn't work for reflections.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - The number to check.
* @returns {boolean} Whether or not the direction is vertical
*/
isVertical: (rotation) => (rotation & 3) === 2,
// rotation % 4 === 2
/**
* Approximates the vector `V(dx,dy)` into one of the
* eight directions provided by `groupD8`.
* @memberof maths.groupD8
* @param {number} dx - X-component of the vector
* @param {number} dy - Y-component of the vector
* @returns {GD8Symmetry} Approximation of the vector into
* one of the eight symmetries.
*/
byDirection: (dx, dy) => {
if (Math.abs(dx) * 2 <= Math.abs(dy)) {
if (dy >= 0) {
return groupD8.S;
}
return groupD8.N;
} else if (Math.abs(dy) * 2 <= Math.abs(dx)) {
if (dx > 0) {
return groupD8.E;
}
return groupD8.W;
} else if (dy > 0) {
if (dx > 0) {
return groupD8.SE;
}
return groupD8.SW;
} else if (dx > 0) {
return groupD8.NE;
}
return groupD8.NW;
},
/**
* Helps sprite to compensate texture packer rotation.
* @memberof maths.groupD8
* @param {Matrix} matrix - sprite world matrix
* @param {GD8Symmetry} rotation - The rotation factor to use.
* @param {number} tx - sprite anchoring
* @param {number} ty - sprite anchoring
*/
matrixAppendRotationInv: (matrix, rotation, tx = 0, ty = 0) => {
const mat = rotationMatrices[groupD8.inv(rotation)];
mat.tx = tx;
mat.ty = ty;
matrix.append(mat);
}
};
exports.groupD8 = groupD8;
//# sourceMappingURL=groupD8.js.map

1
node_modules/pixi.js/lib/maths/matrix/groupD8.js.map generated vendored Normal file

File diff suppressed because one or more lines are too long

262
node_modules/pixi.js/lib/maths/matrix/groupD8.mjs generated vendored Normal file
View File

@@ -0,0 +1,262 @@
import { Matrix } from './Matrix.mjs';
"use strict";
const ux = [1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 0, 1];
const uy = [0, 1, 1, 1, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1];
const vx = [0, -1, -1, -1, 0, 1, 1, 1, 0, 1, 1, 1, 0, -1, -1, -1];
const vy = [1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, 1, 1, 1, 0, -1];
const rotationCayley = [];
const rotationMatrices = [];
const signum = Math.sign;
function init() {
for (let i = 0; i < 16; i++) {
const row = [];
rotationCayley.push(row);
for (let j = 0; j < 16; j++) {
const _ux = signum(ux[i] * ux[j] + vx[i] * uy[j]);
const _uy = signum(uy[i] * ux[j] + vy[i] * uy[j]);
const _vx = signum(ux[i] * vx[j] + vx[i] * vy[j]);
const _vy = signum(uy[i] * vx[j] + vy[i] * vy[j]);
for (let k = 0; k < 16; k++) {
if (ux[k] === _ux && uy[k] === _uy && vx[k] === _vx && vy[k] === _vy) {
row.push(k);
break;
}
}
}
}
for (let i = 0; i < 16; i++) {
const mat = new Matrix();
mat.set(ux[i], uy[i], vx[i], vy[i], 0, 0);
rotationMatrices.push(mat);
}
}
init();
const groupD8 = {
/**
* | Rotation | Direction |
* |----------|-----------|
* | 0° | East |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
E: 0,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 45°↻ | Southeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SE: 1,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 90°↻ | South |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
S: 2,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 135°↻ | Southwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
SW: 3,
/**
* | Rotation | Direction |
* |----------|-----------|
* | 180° | West |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
W: 4,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -135°/225°↻ | Northwest |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NW: 5,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -90°/270°↻ | North |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
N: 6,
/**
* | Rotation | Direction |
* |-------------|--------------|
* | -45°/315°↻ | Northeast |
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
NE: 7,
/**
* Reflection about Y-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_VERTICAL: 8,
/**
* Reflection about the main diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MAIN_DIAGONAL: 10,
/**
* Reflection about X-axis.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
MIRROR_HORIZONTAL: 12,
/**
* Reflection about reverse diagonal.
* @memberof maths.groupD8
* @constant {GD8Symmetry}
*/
REVERSE_DIAGONAL: 14,
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the U-axis
* after rotating the axes.
*/
uX: (ind) => ux[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the U-axis
* after rotating the axes.
*/
uY: (ind) => uy[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The X-component of the V-axis
* after rotating the axes.
*/
vX: (ind) => vx[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} ind - sprite rotation angle.
* @returns {GD8Symmetry} The Y-component of the V-axis
* after rotating the axes.
*/
vY: (ind) => vy[ind],
/**
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - symmetry whose opposite
* is needed. Only rotations have opposite symmetries while
* reflections don't.
* @returns {GD8Symmetry} The opposite symmetry of `rotation`
*/
inv: (rotation) => {
if (rotation & 8) {
return rotation & 15;
}
return -rotation & 7;
},
/**
* Composes the two D8 operations.
*
* Taking `^` as reflection:
*
* | | E=0 | S=2 | W=4 | N=6 | E^=8 | S^=10 | W^=12 | N^=14 |
* |-------|-----|-----|-----|-----|------|-------|-------|-------|
* | E=0 | E | S | W | N | E^ | S^ | W^ | N^ |
* | S=2 | S | W | N | E | S^ | W^ | N^ | E^ |
* | W=4 | W | N | E | S | W^ | N^ | E^ | S^ |
* | N=6 | N | E | S | W | N^ | E^ | S^ | W^ |
* | E^=8 | E^ | N^ | W^ | S^ | E | N | W | S |
* | S^=10 | S^ | E^ | N^ | W^ | S | E | N | W |
* | W^=12 | W^ | S^ | E^ | N^ | W | S | E | N |
* | N^=14 | N^ | W^ | S^ | E^ | N | W | S | E |
*
* [This is a Cayley table]{@link https://en.wikipedia.org/wiki/Cayley_table}
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation, which
* is the row in the above cayley table.
* @param {GD8Symmetry} rotationFirst - First operation, which
* is the column in the above cayley table.
* @returns {GD8Symmetry} Composed operation
*/
add: (rotationSecond, rotationFirst) => rotationCayley[rotationSecond][rotationFirst],
/**
* Reverse of `add`.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotationSecond - Second operation
* @param {GD8Symmetry} rotationFirst - First operation
* @returns {GD8Symmetry} Result
*/
sub: (rotationSecond, rotationFirst) => rotationCayley[rotationSecond][groupD8.inv(rotationFirst)],
/**
* Adds 180 degrees to rotation, which is a commutative
* operation.
* @memberof maths.groupD8
* @param {number} rotation - The number to rotate.
* @returns {number} Rotated number
*/
rotate180: (rotation) => rotation ^ 4,
/**
* Checks if the rotation angle is vertical, i.e. south
* or north. It doesn't work for reflections.
* @memberof maths.groupD8
* @param {GD8Symmetry} rotation - The number to check.
* @returns {boolean} Whether or not the direction is vertical
*/
isVertical: (rotation) => (rotation & 3) === 2,
// rotation % 4 === 2
/**
* Approximates the vector `V(dx,dy)` into one of the
* eight directions provided by `groupD8`.
* @memberof maths.groupD8
* @param {number} dx - X-component of the vector
* @param {number} dy - Y-component of the vector
* @returns {GD8Symmetry} Approximation of the vector into
* one of the eight symmetries.
*/
byDirection: (dx, dy) => {
if (Math.abs(dx) * 2 <= Math.abs(dy)) {
if (dy >= 0) {
return groupD8.S;
}
return groupD8.N;
} else if (Math.abs(dy) * 2 <= Math.abs(dx)) {
if (dx > 0) {
return groupD8.E;
}
return groupD8.W;
} else if (dy > 0) {
if (dx > 0) {
return groupD8.SE;
}
return groupD8.SW;
} else if (dx > 0) {
return groupD8.NE;
}
return groupD8.NW;
},
/**
* Helps sprite to compensate texture packer rotation.
* @memberof maths.groupD8
* @param {Matrix} matrix - sprite world matrix
* @param {GD8Symmetry} rotation - The rotation factor to use.
* @param {number} tx - sprite anchoring
* @param {number} ty - sprite anchoring
*/
matrixAppendRotationInv: (matrix, rotation, tx = 0, ty = 0) => {
const mat = rotationMatrices[groupD8.inv(rotation)];
mat.tx = tx;
mat.ty = ty;
matrix.append(mat);
}
};
export { groupD8 };
//# sourceMappingURL=groupD8.mjs.map

File diff suppressed because one or more lines are too long